An Ancient Greek Computer
( Scientific American June 1959 p.60-67)
In 1901 divers working off the isle of Antikythera found the remains of a clocklike mechanism 2,000 years old. The mechanism now appears to have been a device for calculating the motions of stars and planets
Ένας Αρχαίος Ελληνικός Υπολογιστής
by Derek J. de Solla Price
Among the
treasures of the Greek National Archaeological Museum in Athens are the remains
of the most complex scientific object that has been preserved from antiquity.
Corroded and crumbling from 2,000 years under the sea, its dials, gear wheels
and inscribed plates present the historian with a tantalizing problem. Because
of them we may have to revise many of our estimates of Greek science. By
studying them we may find vital clues to the true origins of that high
scientific technology which hitherto has seemed peculiar to our modern
civilization, setting it apart from all cultures of the past.
From the
evidence of the fragments one can get a good idea of the appearance of the
original object. Consisting of a box with dials on the outside and a very
complex assembly of gear wheels mounted within, it must have resembled a well-
made 18th-century clock. Doors hinged to the box served to protect the dials,
and on all available surfaces of box, doors and dials there were long Greek
inscriptions describing the operation and construction of the instrument. At
least 20 gear wheels of the mechanism have been preserved, including a very
sophisticated assembly of gears that were mounted eccentrically on a turntable
and probably functioned as a sort of epicyclic or differential, gear-system.
Nothing like this instrument is preserved elsewhere. Nothing comparable to
it is known. from any ancient scientific text or literary allusion. On the
contrary, from all that we know of science and technology in the Hellenistic Age
we should have felt that such a device could not exist. Some historians have
suggested that the Greeks were not interested in experiment because of a
contempt-perhaps induced by the existence of the institution of slavery-for
manual labor. On the other hand it has long been recognized that in abstract
mathematics and in mathematical astronomy they were no beginners but rather
"fellows of another college" who reached great heights of sophistication. Many
of the Greek scientific devices known to us from written descriptions show much
mathematical ingenuity, but in all cases the purely mechanical part of the
design seems relatively crude. Gearing was clearly known to the Greeks, but it
was used only in relatively simple applications. They employed pairs of gears to
change angular speed or mechanical advantage, or to apply power through a right
angle, as in the water-driven mill.
Three principal fragment of the Antikythera mechanism are shown from both sides. How the fragment were used to reconstruct the appearance on the original mechanism is shown on the next images. The fragments are presently located in the Greek National Archaeological Museum in Athens.
Even
the most complex mechanical devices described by the ancient writers Hero of
Alexandria and Vitruvius contained only simple gearing. For example, the
taximeter used by the Greeks to measure the distance traveled by the wheels of a
carriage employed only pairs of gears (or gears and worms) to achieve the
necessary ratio of movement. It could be argued that if the Greeks knew the
principle of gearing, they should have had no difficulty in constructing
mechanisms as complex as epicyclic gears. We now know from the fragments in the
National Museum that the Greeks did make such mechanisms, but the knowledge is
so unexpected that some scholars at first thought that the fragments must belong
to some more modern device.
Can we in
fact be sure that the device is ancient? If we can, what was its purpose? What
can it tell us of the ancient world and of the evolution of modern science? To
authenticate the dating of the fragments We must. tell the story of their
discovery, which involves the first (though inadvertent) adventure in underwater
archaeology. Just before Easter in 1900 a party of Dodecanese sponge-divers were
driven by storm to anchor near the tiny southern Greek island of Antikythera
(the accent is on the "kyth," pronounced to rhyme with pith). There, at a depth
of some 200 feet, they found the wreck of an ancient ship. With the help of
Greek archaeologists the wreck was explored; several fine bronze and marble
statues and other objects were recovered. The finds created great excitement,
but the difficulties of diving without heavy equipment were immense, and in
September, 1901, the "dig' was abandoned. Eight months later Valerios Stais, an
archaeologist at the National Museum, was examining some calcified lumps of
corroded bronze that had been set aside as possible pieces of broken statuary.
Suddenly he recognized among them the fragments of a mechanism.
It is now
accepted that the wreck occurred during the first century B.C. Gladys Weinberg
of Athens has been kind enough to report to me the results of several recent
archaeological examinations of the amphorae, pottery and minor objects from the
ship. It appears from her report that one might reason-ably date the wreck more
closely as 65 B.C. ±15 years. Furthermore, since the identifiable objects come
from Rhodes and Cos, it seems that the ship may have been voyaging from these
islands to Rome, perhaps without calling at the Greek mainland.
The fragment
that first caught the eye of Stais was one of the corroded, inscribed plates
that is an integral part of the Antikythera mechanism, as the device later came
to be called. Stais saw immediately that the inscription was ancient. In the
opinion of the epigrapher Benjamin Dean Meritt, the forms of the letters are
those of the 'first century B.C.; they could hardly be older than 100 B.C. nor
younger than the time of Christ. The dating is supported by the content of the
inscriptions. The words used and their astronomical sense are all of this
period. For example, the most extensive and complete piece of inscription is
part of a parapegma (astronomical calendar) similar to that written by
one Geminos, who is thought to have lived in Rhodes about 77 B.C. We may thus be
reasonably sure that the mechanism did not find its way into the wreck at some
later period. Furthermore, it cannot have been very old when it was taken aboard
the ship as booty or merchandise.
As soon as the fragments had been
discovered they were examined by every available archaeologist; so began the
long and difficult process of identifying the mechanism and determining its
function. Some things were clear from the beginning. The unique importance of
the object was obvious, and the gearing was impressively complex. From the
inscriptions and the dials the mechanism was correctly identified as an
astronomical device. The first conjecture was that it was some kind of
navigating instrument – perhaps an astrolabe (a sort
of circular star-finder map also used for simple observations). Some thought
that it might be a small planetarium of the kind that Archimedes is said to have
made. Unfortunately the fragments were covered by a thick curtain of calcified
material and corrosion products, and these concealed so much detail that no one
could be sure of his conjectures or reconstructions. There was nothing to do but
wait for the slow and delicate work of the Museum technicians in cleaning away
this curtain. Meantime, as the work proceeded, several scholars published
accounts of all that was visible, and through their labors a general picture of
the mechanism began to emerge.
On the
basis of new photographs made for me by the Museum in 1955 I realized that the
work of cleaning had reached a point where it might at last be possible to take
the work of identification to a new level. Last summer, wilt the assistance of a
grant from the American Philosophical Society, I was able to visit Athens and
make a minute examination of the fragments. By good fortune George Stamires, a
Greek epigrapher, was there at the same time; he was able to give me invaluable
help by deciphering and transcribing much more of the inscriptions than had been
read before. We are now in the position of being able to "join" the fragments
and to see how they fitted together in the original machine and when they were
brought up from the sea. The success of this work has been most significant, for
previously it had been supposed that the various dials and plates had been badly
squashed together and distorted. It now appears that most of the pieces are very
nearly in their original places, and that we have a much larger fraction of the
complete device than had been thought. This work also provides a clue to the
puzzle of why the fragments lay unrecognized until Stais saw them. When they
were found, the fragments were probably held together in their original
positions by the remains of the wooden frame of the case. In the Museum the
waterlogged wood dried and shrivelled. The fragments then fell apart, revealing
the interior of the mechanism, with its gears and inscribed plates. As a result
of the new examinations we shall in due course be able to publish a technical
account of the fragments and of the construction of the instrument. In the
meantime we can tentatively summarize some of these results and show how they
help to answer the question. What is it? There are four ways of getting at the
answer First, if we knew the details of the mechanism, we should know what it
did. Second, if we could read the dials, we could tell what they showed. Third,
if we could understand the inscriptions, they might tell us about the mechanism.
Fourth, if we knew of any similar mechanism, analogies might be helpful. All
these approaches must be used, for none of them is complete.
The geared
wheels within the mechanism were mounted on a bronze plate. On one side of the
plate we can trace all the gear wheels of the assembly and can determine, at
least approximately, how many teeth each had and how they meshed together. On
the other side we can do nearly as well, but we still lack vital links that
would provide a complete picture of the gearing. The general pattern of the
mechanism is nonetheless quite clear. An input was provided by an axle that came
through the side of the casing and turned a crown-gear wheel. This moved a big,
four-spoked driving-wheel that was connected with two trains of gears that
respectively led up and down the plate and were connected by axles to gears on
the other side of the plate. On that side the gear-trains continued, leading
through an epicyclic turntable and coming eventually to a set of shafts that
turned the dial pointers. When the input axle was turned, the pointers all moved
at various speeds around their dials.
Certain structural features of the
mechanism deserve special attention. All the metal parts of the machine seem to
have been cut from a single sheet of low-tin bronze about two millimeters thick;
no parts were cast or made of another metal. There are indications that the
maker may have used a sheet made much earlier–uniform metal plate of good
quality was probably rare and expensive. All the gear wheels have been made with
teeth of just the same angle (60 degrees) and size, so that any wheel could mesh
with any other. There are signs that the machine was repaired at least twice; a
spoke of the driving wheel has been mended, and a broken tooth in a small wheel
has been replaced. This indicates that the machine actually worked.
Mechanism partly reconstructed.
Exploded diagram shows how the fragments are related to the plates of the mechanism. Some fragments include parts of more than one plate. The labeled parts in the reconstructions are: front-door inscription (a), front dial (b), eccentric drum (c), front of mechanism (d), input shaft (e), fiducial mark (f), four slip rings of upper back dial (g), back-door inscription (h), three slip rings of lower back dial (i) The dimensions are given in millimeters.
The
casing was provided with three dials, one at the front and two at the back. The
fragments of all of them are still covered with pieces of the doors of the
casing and with other debris. Very little can be read on the dials, but there is
hope that they can be cleaned sufficiently to provide information that might be
decisive. The front dial is just clean enough to say exactly what it did. It has
two scales, one of which is fixed and displays the names of the signs of the
zodiac; the other is on a movable slip ring and shows the months of the year.
Both scales are carefully marked off in degrees. The front dial fitted exactly
over the main driving-wheel, which seems to have turned the pointer by means of
an eccentric drum-assembly. Clearly this dial showed the annual motion of the
sun in the zodiac. By means of key letters inscribed on the zodiac scale,
corresponding to other letters on the parapegma calendar plate, it also
showed the main risings and settings of bright stars and constellations
throughout the year.
The back dials are more complex and less legible. The
lower one had three slip rings; the upper, four. Each had a little subsidiary
dial resembling the "seconds" dial of a watch. Each of the large dials is
inscribed with lines about every six degrees, and between the lines there are
letters and numbers. On the lower dial the letters and numbers seem to record
"moon, so many hours; sun, so many hours"; we therefore suggest that this scale
indicates the main lunar phenomena of phases and times of rising and setting. On
the upper dial the inscriptions are much more crowded and might well present
information on the risings and settings, stations and retrogradations of the
planets known to the Greeks (Mercury, Venus, Mars, Jupiter and Saturn).
Some
of the technical details of the dials are especially interesting. The front dial
provides the only known extensive specimen from antiquity of a scientifically
graduated instrument. When we measure the accuracy of the graduations under the
microscope, we find that their average error over the visible 45 degrees is
about a quarter of a degree. The way in which the error varies suggests that the
arc was first geometrically divided and then subdivided by eye only. Even more
important, this dial may give a means of dating the instrument astronomically.
The slip ring is necessary because the old Egyptian calendar, having no leap
years, fell into error by 1/4 day every year; the month scale thus had to be
adjusted by this amount. As they are preserved the two scales of the dial are
out of phase by 13˝ degrees. Standard tables show that this amount could only
occur in the year 80 B.C. and (because we do not know the month) at all years
just 120 years (i.e., 30 days divided by 1/4 day per year) before or after that
date. Alternative dates are archaeologically unlikely: 200 B.C. is too early; 40
A.D. is too late. Hence, if the slip ring has not moved from its last position,
it was set in. 80 B.C. Furthermore, if we are right in supposing that a fiducial
mark near the month scale was put there originally to provide a means of setting
that scale in case of accidental movement, we can tell more. This mark is
exactly 1/2 degree away from the present position of the scale, and this implies
that the mark was made two years before the setting. Thus, although the evidence
is by no means conclusive, we are led to suggest that the instrument was made
about 82 B.C., used for two years (just long enough for the repairs to have been
needed) and then taken onto the ship within the next 30 years.
The
fragments show that the original instrument carried at least four large areas of
inscription: outside the front door, inside the back door, on the plate between
the two back dials and on the parapegma plates near the front dial. As I have
noted, there are also inscriptions around all the dials, and furthermore each
part and hole would seem to have had identifying letters so that the pieces
could be put together in the correct order and position. The main inscriptions
are in a sorry state and only short snatches of them can be read. To provide an
idea of their condition it need only be said that in some cases a plate has
completely disappeared, leaving behind an impression of its letters, standing up
in a mirror image, in relief on the soft corrosion products on the plate below.
It is remarkable that such inscriptions can be read at all.
But even from
the evidence of a few complete words one can get an idea of the subject matter.
The sun is mentioned several times, and the planet Venus once; terms are used
that refer to the stations and retrogradations of planets; the ecliptic is
named. Pointers, apparently those of the dials, are mentioned. A line of one
inscription significantly records "76 years, 19 years." This refers to the
well-known Calippic cycle of 76 years, which is four times the Metonic cycle of
19 years, or 235 synodic (lunar) months. The next line includes the number
"223," which refers to the eclipse cycle of 223 lunar months.
Putting
together the information gathered so far, it seems reasonable to suppose that
the whole purpose of the Antikythera device was to mechanize just this sort of
cyclical relation, which was a strong feature of ancient astronomy. Using the
cycles that have been mentioned, one could easily design gearing that would
operate from one dial having a wheel that revolved annually, and turn by this
gearing a series of other wheels which would move pointers indicating the
sidereal, synodic and draconitic months. Similar cycles were known for the
planetary phenomena; in fact, this type of arithmetical theory is the central
theme of Seleucid Babylonian astronomy, which was transmitted to the Hellenistic
world in the last few centuries B.C. Such arithmetical schemes are quite
distinct from the geometrical theory of circles and epicycles in astronomy,
which seems to have been essentially Greek. The two types of theory were unified
and brought to their peak in the second century A.D. by Claudius Ptolemy, whose
labors marked the triumph of the new mathematical attitude toward geometrical
models that still characterizes physics today.
The Antikythera mechanism
must therefore be an arithmetical counterpart of the much more familiar
geometrical models of the solar system which were known to Plato and Archimedes
and evolved into the orrery and the planetarium. The mechanism is like. a great
astronomical clock without an escapement, or like a modern analogue computer
which uses mechanical parts to save tedious calculation. It is a pity that we
have no way of knowing whether the device was turned automatically or by hand.
It might have been held in the hand and turned by a wheel at the side so that it
would operate as a computer, possibly for astrological use. I feel it is more
likely that it was permanently mounted, perhaps set in a statue, and displayed
as an exhibition piece. In that case it might well have been turned by the power
from a water clock or some other device. Perhaps it is just such a wondrous
device that was mounted inside the famous Tower of Winds in Athens. It is
certainly very similar to the great astronomical cathedral clocks that were
built all over Europe during the Renaissance.
Segments of three dials of the mechanism are visible in the fragments. At left is a simplified drawing of one fragment showing a segment of the upper back dial. At right in this drawing may be seen the four slip rings of the dial; within the rings is a small subsidiary dial
.
Second from the left is a segment of the lower back dial. At right in this drawing is a fixed scale; within it were the three slip rings and within them a subsidiary dial. Third from left is a segment of the front dial. The upper scale in this drawing pertains to the month; the lower scale, to the zodiac. The inscribed area is a parapegma plate. The graph at far right shows the errors (in minutes of arc) of the graduations in the zodiac scale. the arrow above the scale is related to the arrow above the chart.
Details of the main mechanics are shown from the front (left) and the back (right), The number in the illustration refer to the approximate number of the teeth on each gear. The parts labeled with letters are: lug to fix eccentric drum for the front dial (a), repair to spoke (b), guide channel for spring to hold gear of 18 teeth (c), rivets for the axles and support blocks and the back (d), main driving wheel (e), crown wheel (f), input axle (g), shaft of the upper-dial main pointer (h), shaft of the of the upper-dial subsidiary pointer (i), epicyclic turntable (j), repair to tooth (k), shaft of the lower-dial main pointer (l), shaft of the lower-dial subsidiary pointer (m), axles trough the plate (x and y).
It is to
the prehistory of the mechanical I clock that we must look for important
analogies the Antikythera mechanism and for an assessment of its significance.
Unlike other mechanical devices, the clock did not evolve from the simple to the
complex. The oldest clocks of which we are well informed were the most
complicated. All the evidence points to the fact that the clock started as an
astronomical showpiece that happened also to indicate the time. Gradually the
timekeeping functions became more important and the device that showed the
marvelous clockwork of the heavens became subsidiary. Behind the astronomical
clocks of the 14th century there stretches an unbroken sequence of mechanical
models of astronomical theory. At the head of this sequence is the Antikythera
mechanism. Following it are instruments and clocklike computers known from
Islam, from China and India and from the European Middle Ages. The importance of
this line is very great, because it was the tradition of clock- making that
preserved most of man's skill in scientific fine mechanics. During the
Renaissance the scientific instrument-makers evolved from the clockmakers. Thus
the Antikythera mechanism is, in a way, the venerable progenitor of all our
present plethora of scientific hardware.
A significant passage in this story
has to do with the astronomical computers of Islam. Preserved complete at the
Museum of History of Science at Oxford is a 13th-century Islamic geared
calendar-computer that has various periods built into it, so that it shows on
dials the various cycles of the sun and moon.
This
design can be traced back, with slightly different periods but a similar
arrangement of gears, to a manuscript written by the astronomer al-Biruni about
1000 A.D. Such instruments am much simpler than the Antikythera mechanism, but
they show so many points of agreement in technical detail that it seems clear
they came from a common tradition. The same 60-degree gear teeth are used;
wheels are mounted on square-shanked axles; the geometrical layout of the gear
assembly appears comparable. It was just at this time that Islam was drawing on
Greek knowledge and rediscovering ancient Greek texts. It seems likely that the
Antikythera tradition was part of a large corpus of knowledge that has since
been lost to us but was known to the Arabs. It was developed and transmitted by
them to medieval Europe, where it became the foundation for the whole range of
subsequent invention in the field of clockwork.
On the one hand the Islamic
devices knit the whole story together, and demonstrate that it is through
ancestry and not mere coincidence that the Antikythera mechanism resembles a
modern clock. On the other hand they show that the Antikythera mechanism was no
flash in the pan but was a part of an important current in Hellenistic
civilization. History has contrived to keep that current dark to us, and only
the accidental underwater preservation of fragments that would otherwise have
crumbled to dust has now brought it to light. It is a bit frightening to know
that just before the fall of their great civilization the ancient Greeks had
come so close to our age, not only in their thought, but also in their
scientific technology.
| ||
---|---|---|
|
Ancient Greece |
Medieval Greece / Byzantine Empire |
Modern Greece |
---|---|---|
Science, Technology ,
Medicine , Warfare |
Science,
Technology, Arts |
Cities, Islands,
Regions, Fauna/Flora
, |
Cyprus |
---|